Abstract

A new F-18-labeled phenylthiophenyl derivative specific for imaging of serotonin transporters (SERT) in the brain by positron emission tomography (PET) is described. Fluorinated phenylthiophenyl derivative, ACF, 2-[(2-amino-4-chloro-5-fluorophenyl)thio]-N,N-dimethyl-benzenmethanamine, was prepared by first coupling 2,5-dichloro-4-nitroaniline with 2-mercapto-N,N-dimethylbenzamide. The amino group of the coupled adduct was converted to a fluoro group through a Schiemann reaction. Subsequently, a one pot reduction of both nitro and amide groups by BH(3)-tetrahydrofuran yielded the nonradioactive ACF (yield 25%). In vitro binding assays using cell membrane homogenates of LLC cells expressing SERT, dopamine transporters (DAT), or norepinephrine transporters (NET) showed excellent binding affinity and selectivity for SERT (K(i) = 0.05, 3020, and 650 nM for SERT, DAT, and NET, respectively). For preparation of the [(18)F]ACF, the NH(2) group of the initially coupled adduct was converted to the trimethylammonium salt, which was replaced by [(18)F]fluoride in the presence of Kryptofix 222 and potassium carbonate. The final product, [(18)F]ACF, was obtained after a borane and stannous chloride reduction reaction. The combined two step reaction gave a radiochemical yield of 10-15% (EOB) and a radiochemical purity of >99%. Synthesis of the novel PET tracer, [(18)F]ACF, as a probe for binding to SERT in the brain was successfully achieved. The new tracer [(18)F]ACF showed excellent brain penetration and selective localization after an iv injection in rats (brain uptake at 2, 30, 60, 120, and 240 min was 3.27, 1.28, 0.69, 0.21, and 0.06% dose/organ, respectively). The hypothalamus/cerebellum ratio at 60 min post iv injection was 3.55. This specific localization in the hypothalamus was blocked by pretreatment of (+)McN5652. This novel ligand is a potential PET tracer for in vivo evaluation of SERT in the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.