Abstract

Developing a straightforward and effective strategy to modify antimicrobial peptides (AMPs) is crucial in overcoming the challenges posed by their instability and toxicity. Phosphorylation can reduce toxicity and improve the stability of AMPs. Based on these, we designed a series of peptides and their corresponding phosphorylated forms. The results showed that all phosphorylated peptides displayed reduced toxicity and enhanced stability compared to their unphosphorylated counterparts. Among them, W3BipY8-P stood out as the most promising peptide, exhibiting similar antibacterial activity as its unphosphorylated analog W3BipY8 but with significantly reduced hemolytic activity (19-fold decrease), cytotoxicity (3.3-fold decrease), and an extended serum half-life 6.3 times longer than W3BipY8. W3BipY8-P exerted bactericidal effects by disrupting bacterial membranes. Notably, W3BipY8-P significantly prolonged the survival of bacteria-infected animals while its LD50 was 4.2 times higher than that of W3BipY8. These findings highlight phosphorylation as an effective strategy for improving the antimicrobial properties of AMPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.