Abstract

This contribution discusses the potential of UAV-assisted (unmanned aerial vehicles) photogrammetry for the study and preservation of mining heritage sites using the example of Roman gold mining infrastructure in northwestern Spain. The study area represents the largest gold area in Roman times and comprises 7 mining elements of interest that characterize the most representative examples of such ancient works. UAV technology provides a non-invasive procedure valuable for the acquisition of digital information in remote, difficult to access areas or under the risk of destruction. The proposed approach is a cost-effective, robust and rapid method for image processing in remote areas were no traditional surveying technologies are available. It is based on a combination of data provided by aerial orthoimage and LiDAR (Light Detection and Ranging) to improve the accuracy of UAV derived data. The results provide high-resolution orthomosaic, DEMs and 3D textured models that aim for the documentation of ancient mining scenarios, providing high-resolution digital information that improves the identification, description and interpretation of mining elements such as the hydraulic infrastructure, the presence of open-cast mines which exemplifies the different exploitation methods, and settlements. However, beyond the scientific and technical information provided by the data, the 3D documentation of ancient mining scenarios is a powerful tool for an effective and wider public diffusion ensuring the visualization, preservation and awareness over the importance and conservation of world mining heritage sites.

Highlights

  • Gold has extraordinary physical-chemical properties and represents one of the scarcest elements in nature

  • This study provided a good source of information that allows improving the knowledge over the transformation of mining landscapes and the implemented methodology for gold prospection and exploitation during the Roman period

  • The aerial photogrammetric survey of the Roman gold mining infrastructure consisted of the acquisition of aerial images from 7 highly representative elements of the northwest mining captured across the Teleno area (Figure 2)

Read more

Summary

Introduction

Gold has extraordinary physical-chemical properties and represents one of the scarcest elements in nature. Average abundances in the Earth’s crust vary from 0.001 to 0.006 ppm (g/t) [1]. The extremely bright and intense yellow color, together with its wide ductility makes gold a coveted mineral since antiquity [2]. The world’s oldest gold manufactured objects, found in the Necropolis of Varna (Bulgaria) and dating back from the VI millennium BC, represents the earliest attempts of gold metallurgy [3]. Gold acquired an increasing relevance in ancient southern Europe cultures [4]. Gold has Minerals 2018, 8, 518; doi:10.3390/min8110518 www.mdpi.com/journal/minerals

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.