Abstract
Immune checkpoint blockers (ICB) reinvigorate the immune system by removing the molecular brakes responsible for the scarce activity of immune phenotypes against malignant cells. After having proven their remarkable role as monotherapy, combinations of anti-Programmed cell death 1 (PD-1)/Programmed death-ligand 1 (PD-L1) agents with cytotoxic T-lymphocyte–associated antigen 4 (CTLA-4) antibodies, chemotherapy and/or anti-angiogenic compounds provide unprecedented results and durable responses across a variety of tumour types. Nevertheless, the main drawbacks of ICB are represented by primary and acquired resistance, translating into disease progression, as well as by immune-related toxicities. In this sense, novel strategies to foster the immune system through its direct stimulation are being tested in order to provide additional clinical improvements in patients with cancer. In this scenario, the co-stimulatory molecule OX40 (CD134) belongs to the next generation of immune therapeutic targets. Preliminary results of early clinical trials evaluating OX40 stimulation by means of different agents are encouraging. Here we review the rationale of OX40 targeting, highlighting the combination of OX40-directed therapies with different anticancer agents as a potential strategy to foster the immune system against malignant phenotypes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.