Abstract
All Pairs Shortest Path (APSP) is a classic problem in graph theory. While for general weighted graphs there is no algorithm that computes APSP in O(n^{3-epsilon}) time (epsilon > 0), by using fast matrix multiplication algorithms, we can compute APSP in O(n^{omega}*log(n)) time (omega < 2.373) for undirected unweighted graphs, and in O(n^{2.5302}) time for directed unweighted graphs. In the current state of matters, there is a substantial gap between the upper bounds of the problem for undirected and directed graphs, and for a long time, it is remained an important open question whether it is possible to close this gap. In this paper we introduce a new parameter that measures the symmetry of directed graphs (i.e. their closeness to undirected graphs), and obtain a new parameterized APSP algorithm for directed unweighted graphs, that generalizes Seidel's O(n^{omega}*log(n)) time algorithm for undirected unweighted graphs. Given a directed unweighted graph G, unless it is highly asymmetric, our algorithms can compute APSP in o(n^{2.5}) time for G, providing for such graphs a faster APSP algorithm than the state-of-the-art algorithms for the problem.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.