Abstract
On distributed memory electronic computers, the implementation and association of fast parallel matrix multiplication algorithms has yielded astounding results and insights. In this discourse, we use the tools of molecular biology to demonstrate the theoretical encoding of Strassen's fast matrix multiplication algorithm with DNA based on an $n$-moduli set in the residue number system, thereby demonstrating the viability of computational mathematics with DNA. As a result, a general scalable implementation of this model in the DNA computing paradigm is presented and can be generalized to the application of \emph{all} fast matrix multiplication algorithms on a DNA computer. We also discuss the practical capabilities and issues of this scalable implementation. Fast methods of matrix computations with DNA are important because they also allow for the efficient implementation of other algorithms (i.e. inversion, computing determinants, and graph theory) with DNA.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: "International Journal of Computer Engineering Research"
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.