Abstract
Current model-based OPC methods are targeting the critical dimension and the fidelity of the design layout. These methods cannot suitably consider the process margin and reveal several problems below 70nm design layout with the low k1 process factor. Although litho-friendly layout methods have been introduced to improve the photolithography process margin, designing perfect litho-friendly layout is difficult because of the designer’s lacking of knowledge about the process and the relationship between the layers. Thus we have developed new OPC methods to increase the process margin for sub-70nm process. In this paper we propose new methods to generate the OPC-friendly layout from the original design by 1) rule-based retargeting, 2) model-based retargeting using NILS values, and 3) model-based retargeting by MEEF values. In addition, we have evaluated the post-processing treatment by NILS or MEEF values after the model-based OPC. The proposed OPC methods are effective for the memory bit line layer and metal layers, which are composed of the complicated 2-dimensional configuration and also have the advantage to compensate the model inaccuracy for the layout having non-periodic pattern structure. While the rule-based retargeting method requires high engineering cost to optimize the retargeting rule, the model-based retargeting method can be easily implemented into the conventional OPC process and do not need the extraction process of the retargeting rule which is not simple for the 2-dimensional patterns. Applying the model-based retargeting we could increase the DOF margin by 50% compared to the normal OPC method for sub-70nm memory device with ArF lithography. It is more effective to use these retargeting methods from the defocused OPC models.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.