Abstract

Stellar seismology reveals some interior properties of thousands of solar-type stars but the solar seismic sound speed stays puzzling since a decade as it disagrees with the Standard Solar Model (SSM) prediction. One of the explanations of this disagreement may be found in the treatment of the transport of radiation from the solar core to the surface. As the same framework is used for other stars, it is important to check precisely the reliability of the interacting cross sections of photons with each species in order to ensure the energy transport for temperature T > 2–106 K and density ρ > 0.2 g/cm3. In this paper, we propose a new technique to reach the domain of temperature and density found in the solar radiative interior. This technique called the Double Ablation Front (DAF) is based on a high conversion of the laser energy into X-rays thanks to moderated Z material irradiated by laser intensity between 1.5 × 1015 W/cm2 and 4 × 1015 W/cm2. This high conversion creates, in addition to the electronic front a second ablation front in the moderated Z material. Between the two fronts there is a plateau of density and temperature that we exploit to heat a sample of iron or of oxide. The first simulations realized with the hydrodynamic code CHIC show that this technique allows to reach conditions equivalent to half the radiative zone of the Sun with high stability both in time and space. We examine the possibility to measure both iron and oxygen absorption spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.