Abstract

In this study, we construct new numerical methods for solving the initial value problem (IVP) in ordinary differential equations based on a symmetrical quadrature integration formula using hybrid functions. The proposed methods are designed to provide an efficient and accurate solution to IVP and are more suitable for problems with non-smooth solutions. The key idea behind the proposed methods is to combine the advantages of traditional numerical methods, such as Runge–Kutta and Taylor’s series methods, with the strengths of modern hybrid functions. Furthermore, we discuss the accuracy and stability analysis of these methods. The resulting methods can handle a wide range of problems, including those with singularities, discontinuities, and other non-smooth features. Finally, to demonstrate the validity of the proposed methods, we provide several numerical examples to illustrate the efficiency and accuracy of these methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.