Abstract

AbstractA new, slack, and uniformly porous TiO2 material is synthesized by a simple, carbon nanotube (CNT) template‐assisted hydrothermal method and is further explored for protein immobilization and biosensing. Results demonstrate that the material has a large specific surface area and a unique nanostructure with a uniform pore‐size distribution. Glucose oxidase (GOD) immobilized on the material exhibits facile, direct electrochemistry and good electrocatalytic performance without any electron mediator. The fabricated glucose oxidase sensor shows good stability and high sensitivity, which indicates that the slack porous TiO2 is an attractive material for use in the fabrication of biosensors, particularly enzymatic sensors, because of its direct electrochemistry, high specific surface area, and unique nanostructure for efficient immobilization of biomolecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.