Abstract

Cellulose nanocrystals (CNs) were fabricated from sulfuric acid hydrolysis of cottonseed linter. The crystals were then utilized to prepare nitrile rubber (NBR)/CNs nanocomposites by mixing a water suspension of CNs and the NBR latex directly. CNs formed a strong filler-filler network in the NBR matrix which resulted in an obvious “Payne effect”. The mechanical performance showed that CNs have a good reinforcing effect on NBR. The composites exhibited an increase of tensile strength from 7.7 to 15.8 MPa with the CNs content increasing from 0 to 20 phr. The scanning electron microscope (SEM) images showed that CNs dispersed in NBR matrix uniformly, which contributed to the considerable mechanical properties of the resultant composites. The results of dynamic mechanical analysis (DMA) demonstrated that the glass transition temperature (Tg) of the composites was shifted from 10.8 to 17.2 °C with CNs content increasing to 20 phr,and the storage modulus increased simultaneously. Thermal gravimetric analysis (TGA) result shows that the degradation corresponding to CNs in NBR/CNs nanocomposites is much higher than the degradation temperature of pure CNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.