Abstract

This article, written by JPT Technology Editor Judy Feder, contains highlights of paper SPE 191598, “Enhanced Flux Management for Sand-Control Completions,” by John Cameron, SPE, Karim Zaki, SPE, Colin Jones, SPE, and Antonio Lazo, SPE, Chevron, prepared for presentation at the 2018 SPE Annual Technical Conference and Exhibition, Dallas, 24–26 September 2018. The paper has not been peer reviewed. This paper discusses a probabilistic flux and erosion model and work flow that extend the ability to estimate inflow through sand screens on a foot-by-foot basis along the wellbore using the well’s completion details, production rate, and reservoir and bottomhole flowing pressures. The model is then calibrated and history matched using well data from pressure transient analyses, well tests, and production logs as available. Extensive laboratory testing coupled with computational flow dynamics modeling provided the algorithms for different screen types to relate flux and sand production to the expected service life for any given future production profile. This allows the well’s planned production profile to be optimized by balancing risk, rate, and reserves recovery. Introduction The flux management work flow was field trialed on various failed and successful sand-control completions and has been used on many wells subsequently. It has been applied to wells currently on production by history matching to track current erosion levels and then to predict future erosion or time to failure. Failure here is taken to mean a loss of sand control, typical higher rates of sand with large particles and proppant. The work flow can also be applied to planned wells to help optimize the completion design. The work flow is currently being adapted to be applied to producing wells in real time. When compared with conventional flux limit models, the work flow drives increased production while the risk of sand production is low and where the completion quality is good. Conversely, where pack quality is low or uncertain and sanding information is of low quality, the work flow can result in a comparative reduction in the allowable rates. The prediction uncertainty ranges reflect the quality of the input information and are driving improvements to the measurement of completion quality and sand production as well as to new, cost-effective, erosion-resistant screen designs. The new work flow considers pack quality and sand production (particle size, type, and concentration) and allows an operator to maximize well economics by optimizing the production profile for rate, reserves recovery, and service life. Conventional screen erosion models, on the other hand, do not consider a sand-control screen’s erosion history and future service life. Historical Perspective and Review Sand-control failures can be caused by installation damage, compaction, corrosion, or improper deployment or inappropriate system selection. The complete paper presents a historical perspective and review of these failure mechanisms and methods of addressing them and includes a discussion of fluid velocities and constraints. Enhanced Flux Management Work Flow Conventional erosion models are aimed at calculating fluid-velocity limits and ensuring that the fluid velocity is constrained to below these limits at all times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.