Abstract
In this paper, we present diverse new metric properties that prox-regular sets shared with convex ones. At the heart of our work lie the Legendre-Fenchel transform and complements of balls. First, we show that a connected prox-regular set is completely determined by the Legendre-Fenchel transform of a suitable perturbation of its indicator function. Then, we prove that such a function is also the right tool to extend, to the context of prox-regular sets, the famous connection between the distance function and the support function of a convex set. On the other hand, given a prox-regular set, we examine the intersection of complements of open balls containing the set. We establish that the distance of a point to a prox-regular set is the maximum of the distances of the point from boundaries of all such complements separating the set and the point. This is in the line of the known result expressing the distance from a convex set in terms of separating hyperplanes. To the best of our knowledge, these results are new in the literature and show that the class of prox-regular sets have good properties known in convex analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.