Abstract
Coronary flow reserve (CFR) is an important index of coronary microcirculatory function. The objective of this study was to validate the reproducibility and accuracy of intravascular conductance catheter-based method for measurements of baseline and hyperemic coronary flow velocity (and hence CFR). The absolute coronary blood velocity was determined by measuring the time of transit of a saline injection between two pairs of electrodes (known distance) on a conductance catheter during a routine saline injection without the need for reference flow. In vitro validation was made in the velocity range of 5 to 70 cm/s in reference to the volume collection method. In 10 swine, velocity measurements were compared with those from a flow probe in coronary arteries at different CFR attained by microsphere embolization. In vitro, the mean difference between the proposed method and volume collection was 0.7 ± 1.34 cm/s for steady flow and -0.77 ± 2.22 cm/s for pulsatile flow. The mean difference between duplicate measurements was 0 ± 1.4 cm/s. In in vivo experiments, the flow (product of velocity and lumen cross-sectional area that is also measured by the conductance catheter) was determined in both normal and stenotic vessels and the mean difference between the proposed method and flow probe was -1 ± 12 ml/min (flow ranged from 10 to 130 ml/min). For CFR, the mean difference between the two methods was 0.06 ± 0.28 (range of 1 to 3). Our results demonstrate the reproducibility and accuracy of velocity and CFR measurements with a conductance catheter by use of a standard saline injection. The ability of the combined measurement of coronary lumen area (as previously validated) and current velocity and CFR measurements provides an integrative diagnostic tool for interventional cardiology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Heart and Circulatory Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.