Abstract
Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated gravitational radiation is likely to carry profuse information about the underlying processes driving the supernovae. Calculations based on analytic models predict GW energies within the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced detector era. Several methods have been proposed based on various likelihood-based regulators that work on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae) from potential GW sources. To address this problem, we have developed an analysis pipeline based on a method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a standard network analysis as commonly used in GW pipelines and the same by implementing the new method in conjunction with the network. The result shows significant improvement in detection statistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.