Abstract

To describe recent findings of diisocyanate-mediated mechanisms in allergy and toxicology by addressing the role of microRNA (miR) in immune responses that may contribute to the development of occupational asthma (OA). Studies of diisocyanate asthma have traditionally focused on the immune and inflammatory patterns associated with diisocyanate exposures; however, recognized knowledge gaps exist regarding the detailed molecular mechanism(s) of pathogenesis. Recent studies demonstrate the critical role endogenous microRNAs play as gene regulators in maintaining homeostasis of the human body, and in the pathophysiology of many diseases including asthma. Given that diisocyanate-OA shares many pathophysiological characteristics with asthma, it is likely that miR-mediated mechanisms are involved in the pathophysiology of diisocyanate-OA. Recent reports have shown that changes in expression of endogenous miRs are associated with exposure to the occupationally relevant diisocyanates, toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI). Continued mechanistic study of these relevant miRs may lead to the development of novel biomarkers of occupational exposure and/or provide efficacious targets for therapeutic strategies in diisocyanate asthma. The molecular mechanisms underlying diisocyanate-OA pathophysiology are heterogeneous and complicated. In this review, we highlight recent research into the roles and potential regulation of miRs in diisocyanate-OA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.