Abstract

New Markers of Oxidative Damage to Macromolecules The presence of free radicals in biological material has been discovered some 50 years ago. In physiological conditions, free radicals, in the first place the ones of oxygen and nitrogen, are continuously synthesized and involved in the regulation of a series of physiological processes. The excess of free radicals is efficiently eliminated from the body in order to prevent their toxic effects. Toxic effects of free radicals may be classified into three groups: a) change of intracellular redox potential, b) oxidative modification of lipids, proteins and DNA, and c) gene activation. Lipid peroxidation involving cell membranes, lipoproteins and other molecules leads to the production of primary high-reactive intermediaries (alkyl radicals, conjugated dienes, peroxy- and alkoxyl radicals and lipid hydroperoxide), whose further breakdown generates the secondary products of lipid peroxidation: short-chain evaporable hydrocarbons, aldehydes and final products of lipid peroxidation: isoprostanes, MDA, 4-hydroxy-2, 3-transnonenal and 4,5-dihydroxydecenal which are important mediators of atherosclerosis, coronary disease, acute myocardial infarction, rheumatoid arthritis, systemic sclerosis and lupus erythematodes. Oxidative modification of proteins is manifested by changes in their primary, secondary and tertiary structures. Proteins have a specific biological function, and therefore their modification results in unique functional consequences. The nature of protein modification may provide valid information on the type of oxidants causing the damage. Chlorotyrosyl is a specific marker of oxidative damage to tyrosine caused by HOCl action, which most commonly reflects the involvement of neutrophils and monocytes in oxidative stress, while nitrotyrosyl indicates the presence of higher peroxy-nitrite synthesis. Methyonin and cysteine are the amino acids most sensitive to oxidative stress, carbonyl groups are markers of severe damage caused by free radicals, and di-tyrosyl is the most significant and sensitive marker of oxidative modification made by γ rays. >Carbonyl stress< is an important form of the secondary oxidation of proteins, where reducing sugars non-enzymatically react with amino groups of proteins and lipids and give rise to the production of covalent compounds known as advanced glycosylated end products (AGE-products). A hydroxyl radical damages the DNA, leading to a loss of base and the formation of abasic sites (AP sites), break of DNA chain and sugar modification. Final lipid peroxidation products (MDA) may covalently bind to DNA, producing the >DNA radicals< which are responsible for mutations. Measurement of an adequate oxidative stress biomarker may not only point to an early onset of disease, its progression and assessment of therapy effectiveness, but can also help in the clarification of the pathophysiological mechanisms of tissue damage caused by oxidative stress, prediction of disease prognosis and choice of appropriate treatment in the early stages of disease.

Highlights

  • The presence of free radicals in biological materials was discovered some 50 years ago [1]

  • Toxic effects of free radicals may be classified into three groups: a) change of intracellular redox potential, b) oxidative modification of lipids, proteins and DNA, and c) gene activation

  • Lipid peroxidation involving cell membranes, lipoproteins and other molecules leads to the production of primary high-reactive intermediaries, whose further breakdown generates the secondary products of lipid peroxidation: short-chain evaporable hydrocarbons, aldehydes and final products of lipid peroxidation: isoprostanes, MDA, 4hydroxy-2,3-transnonenal and 4,5-dihydroxydecenal which are important mediators of atherosclerosis, coronary disease, acute myocardial infarction, rheumatoid arthritis, systemic sclerosis and lupus erythematodes

Read more

Summary

Introduction

The presence of free radicals in biological materials was discovered some 50 years ago [1]. Free radicals and redox stress participate actively in cell signalization as secondary messengers in the activation of transcription factors and induction of gene expression. Production of free radicals may be more intensive and persistent, the antioxidant response will not be adequate to neutralize them and restore the system to the initial level of redox-homeostasis. In such cases, the system may still be recovered and restore its balance, but the newly developed »quasi-stable« state is followed by a high production of free radicals and varying gene expression.

Lipid peroxidation
End products of lipid peroxidation
Determination of lipid peroxidation end products
Oxidative modification of proteins
Direct oxidation of amino acids
Secondary mechanism of protein oxidative modification
Table III Biologically significant AGE
Determination of oxidatively modified amino acids
Detection methods
Tryptophanyl Hydroperoxides
Oxidative modification of DNA
Interaction with glycooxidation products
Determination of oxidatively modified products of DNA
The choice of oxidative stress biomarker and method validation

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.