Abstract

This paper gives a review of recent developments in luminescence measurement facilities on the Risø TL/OSL reader including radio-luminescence (RL), exo-electron and violet stimulation attachments, and a method for characterising and if necessary correcting for beta irradiation source non-uniformity. We first describe improvements to the existing RL option to allow near infra-red detection (NIR) during irradiation by the built-in 90Sr/90Y beta source. The RL optical signal is collected by a liquid light guide through an F34-901 interference filter and detection is based on a dedicated thermoelectrically cooled NIR sensitive PMT (detection window peak at 855 nm, FWHM 27 nm). Software and electronics have been modified to allow standard TL and OSL measurements in the same sequence as RL measurements. Together with a new bleaching source based on a high-power UV LED (395 nm; 700 mW/cm2), this facility has been used to measure natural doses in feldspar using the decaying NIR RL signal. Secondly, we present a method for mapping radiation field of the built-in 90Sr/90Y β-source and estimating grain-location specific dose-rates. This is important for the accuracy of single grain results, when radiation field is spatially non-uniform across the sample area. We document the effect of this correction method and further investigate on the effect of lifting the source to achieve a better dose-rate uniformity. Finally we summarise two recently-developed novel facilities to help investigate (i) the time scales involved in OSL processes (time-resolved exo-electron detection) and (ii) extending the age range (violet stimulated signals from deep quartz OSL traps).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.