Abstract

The bin packing problem with conflicts (BPC) consists of minimizing the number of bins used to pack a set of items, where some items cannot be packed together in the same bin due to compatibility restrictions. The concepts of dual-feasible functions (DFF) and data-dependent dual-feasible functions (DDFF) have been used in the literature to improve the resolution of several cutting and packing problems. In this paper, we propose a general framework for deriving new DDFF as well as a new concept of generalized data-dependent dual-feasible functions (GDDFF), a conflict generalization of DDFF. The GDDFF take into account the structure of the conflict graph using the techniques of graph triangulation and tree-decomposition. Then we show how these techniques can be used in order to improve the existing lower bounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.