Abstract
A fullerene graph is a cubic and 3-connected plane graph (or spherical map) that has exactly 12 faces of size 5 and other faces of size 6, which can be regarded as the molecular graph of a fullerene. T. Doslic [3] obtained that a fullerene graph with p vertices has at least (p+2)/2 perfect matchings by applying the recently developed decomposition techniques in matching theory of graphs. This note gets a better lower bound ⌈3(p+2)/4⌉ of the number of perfect matchings of a fullerene graph by finding its 2-extendability. This property further implies a chemical consequence that every derivative of a fullerene by substituting any two pairs of adjacent carbon atoms permits a Kekule structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.