Abstract

We have synthesized and characterized new thallium chalcogenides of the general formula Tl2PbMQ4 (M = Zr, Hf; Q = S, Se) from the constituent elements via high-temperature reaction conditions. These sulfides and selenides crystallize in the monoclinic crystal system (space group C2/c). The unit cell parameters refined from single-crystal X-ray diffraction data for Tl2PbZrS4 are a = 15.455(4) Å, b = 8.214(2) Å, c = 6.751(2) Å, β = 109.093(3)°, and V = 809.9(4) Å(3), with Z = 4. No corresponding tellurides were obtained from similar reaction conditions. The isostructural quaternary chalcogenides form a layered structure, composed of alternating metal and chalcogen layers. The latter are packed along the a axis as in the face-centered cubic packing (ABC), while the metal layers alternate between Tl layers and mixed Pb/Zr layers. All metal atoms are located in differently distorted Q6 octahedra, with the TlQ6 polyhedra being the least regular ones. Density functional theory based electronic structure calculations with inclusion of relativistic spin-orbit interactions predict (indirect) energy band gaps of 0.66 and 0.33 eV for Tl2PbZrS4 and Tl2PbHfSe4, respectively. Optical spectroscopy revealed significantly larger (direct) band gaps of 1.2 and 1.6 eV. The semiconducting character is in agreement with the charge-balanced formula (Tl(+))2Pb(2+)M(4+)(Q(2-))4. The electrical transport properties also show the semiconducting nature of these materials. For Tl2PbHfSe4, the Seebeck coefficient increases from +190 μV K(-1) at room temperature to +420 μV K(-1) at 520 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.