Abstract

Simultaneous nitrate and phosphorus removal can be completed by pyrite- and influent organics-involved mixotrophic denitrification and chemical phosphorus removal via iron precipitation. However, so far, how their removal performances change with iron precipitation accumulation remains unclear. In this study, the differences in nitrate and phosphorus removal from municipal tailwater between volcanic and pyrite supported biofilters (V-BF, P-BF) for a long-term operation were investigated, as well as the underlying mechanism for these differences. The nitrate removal efficiencies (NREs) in P-BF were greater than those in V-BF due to the synergistic effect of influent organic and pyrite, as evidenced by comparable TOC consumption and Fe2+/SO42− production. The NREs in P-BF were gradually lower than in V-BF as a result of bacterial cell-iron encrustation observed in TEM images, which would deteriorate microbial activity. However, the phosphorus removal efficiencies (PREs) in P-BF remained consistently higher than in V-BF, resulting from chemical phosphorus removal which was confirmed that P, Fe and O elements dominated on the pyrite surface after use by SEM-EDS. The dominant denitrifying bacteria differed significantly, autotrophic and heterotrophic denitrifying microorganisms coexisted in P-BF. The relative abundances of the narG coding gene in P-BF were higher than that in V-BF, which was consistent with the total relative abundances of identified denitrifying bacteria. Besides, the mechanism of simultaneous nitrogen and phosphorus removal in the pyrite-involved mixotrophic denitrification process has been deduced. This work has significant implications for the practical application of a pyrite-involved mixotrophic denitrification process for low C/N wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call