Abstract

Red claw crayfish (Cherax quadricarinatus) is an important freshwater shrimp species worldwide with enormous economic value. Waterless transportation is an inherent feature of red claw crayfish transportation. However, the high mortality of red claw crayfish is a severe problem in the aquaculture of crayfish after waterless transportation. In this study, we investigated the responses of the hepatopancreas from the red claw crayfish undergoing air exposure stress and normal conditions on transcriptome levels. We used Illumina-based RNA sequencing (RNA-Seq) to perform a transcriptome analysis from the hepatopancreas of red claw crayfish challenged by air exposure. An average of 57,148,800 clean reads per library was obtained, and 33,567 unigenes could be predicted and classified according to their homology with matches in the National Center for Biotechnology Information (NCBI) non-redundant protein sequences (Nr), Gene Ontology (GO), a manually annotated and reviewed protein sequence database (Swiss-Prot), protein families (Pfam), Clusters of Orthologous Groups (COG) of proteins, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. 690 and 3407 differentially expressed genes (DEGs) were identified between the two stress stages of the red claw crayfish. More DEGs were identified in 12 h, indicating that gene expressions were largely changed at 12 h. Some immune-related pathways and genes were identified according to KEGG and GO enrichment analysis. A total of 12 DEGs involved in immune response and trehalose mechanism were verified by quantitative real-time-polymerase chain reaction (qRT-PCR). The results indicated that the red claw crayfish might counteract the stress of air exposure at the transcriptomic level by increasing expression levels of antioxidant-, immune-, and trehalose metabolism-related genes. These transcriptome results from the hepatopancreas provide significant insights into the influence mechanism of air exposure to the trehalose mechanism and immune response in the red claw crayfish.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call