Abstract
In this work, we have investigated the mechanism, thermochemistry and kinetics of the reaction of syn-cis-CH2RzCRyCO+O- (where Rz, Ry = H, CH3-) unsaturated Criegee intermediates (CIs) with CF3COOH using quantum chemical methods. The rate coefficients for the barrierless reactions were calculated using variable reaction coordinate variational transition state theory (VRC-VTST). For the syn-cis-CH2RzCRyCO+O- conformation in which conjugated CC and CO double bonds are aligned with each other, we propose a new pathway for the unidirectional addition of an OC-OH molecule (CF3COOH) to the CC double bond of syn-cis-CH2RzCRyCO+O-. The rate coefficient for the 1,4-CC addition reaction at 298 K is ∼10-10 to 10-11 cm3 s-1, resulting in the formation of CF3C(O)OCH2CRzRyCOOH trifluoroacetate alkyl allyl hydroperoxide (TFAAAH) as a new transitory adduct. It can act as a precursor for the formation of secondary organic aerosols (SOAs). This novel TFAAAH hydroperoxide was identified through a detailed quantum chemical study of the 1,4-addition mechanism and will provide new insights into the significance of the 1,4-addition reaction of unsaturated Cls with trace tropospheric gases on -CRzCH2 vinyl carbon atoms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have