Abstract

Diabetic Nephropathy (DN), a chronic complication of diabetes, is characterized by glomerular hyper-trophy, albuminuria, decreased glomerular filtration rate, and renal fibrosis resulting in end stage renal disease. Diabetic Nephropathy is one of the major micro-vascular complications of long term diabetes mellitus. The pathogenesis of diabetic nephropathy is multifactorial. For many years it was consensus among scientists that hyper filtration and activation of the renin angiotensin aldosterone system is enough to develop kidney injury (diabetic nephropathy). The goal of this review is to describe new pathways involved in the pathogenesis of diabetic nephropathy. Recent studies showed that new pathways are involved. One of these pathways is the increased production of free radicals via oxidative stress due to increased iron deposition in the lysosomes of the proximal convolute tubules. The increased oxidative stress in the lysosomes of the proximal convolute tubules can down regulate Klotho Protein expression and the synthesis of active vitamin D. The decrease in Klotho, active vitamin D and his receptor can aggravate the progression of diabetic nephropathy. AGEs-induced increased oxidative stress, also activated PKC-induced increased production of cytokines, chemokine’s and different inflammatory and apoptotic signals. Another pathway involved in the pathogenesis of diabetic nephropathy is the altered autophagy process via hyperglycaemia induced activation of the mTORC1 in this review we will concentrate on new data published recently on these pathways involved in the pathogenesis of diabetic nephropathy and new treatments proposed.

Highlights

  • Diabetic Nephropathy is one of the major micro-vascular complications of diabetes mellitus resulting in end-stage renal disease (ESRD) necessitating renal replacement therapy within 20 years of DM onset

  • Different pathways are involved in the pathogenesis of diabetic nephropathy (DN), and involved altered intracellular metabolism associated with hyperglycemia (Glucose toxicity), including the activation of protein kinase C, renin-angiotensinaldosterone axis (RAAS) and the accumulation of advanced glycation end-products, accelerated oxidative stress, and altered apoptosis (Figure 1)

  • Reactive oxygen species (ROS), those derived from excessive labile iron, have been implicated in the increase of oxidative stress injury in the renal proximal convolute tubular cells (PCT), and podocytes with progression of DN and other vascular complications of DM [23,24]

Read more

Summary

Introduction

Diabetic Nephropathy is one of the major micro-vascular complications of diabetes mellitus resulting in end-stage renal disease (ESRD) necessitating renal replacement therapy within 20 years of DM onset. More than 40% of patients with DM will develop diabetic nephropathy (DN) after 10 years of diabetes mellitus onset. The pathogenesis of DN is multifactorial including genetic and environmental factors [1,2]. Risk factors such as arterial hypertension and genetic factors are important in the development of DN. Different pathways are involved in the pathogenesis of DN, and involved altered intracellular metabolism associated with hyperglycemia (Glucose toxicity), including the activation of protein kinase C, renin-angiotensinaldosterone axis (RAAS) and the accumulation of advanced glycation end-products, accelerated oxidative stress, and altered apoptosis (Figure 1).

The Different Pathways
Iron and oxidative stress
Findings
Discussion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.