Abstract

Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD), however, specific treatment for DN has not yet been elucidated. Therefore, it is critically important to understand the molecular mechanism underlying DN to develop cause-related therapeutic strategy. To date, various factors such as hemodynamic changes and metabolic pathways have been shown to be involved in the pathogenesis of DN. Excessive glucose influx activates cellular signaling pathways, including the diacylglycerol (DAG)-protein kinase C (PKC) pathway, advanced glycation end-products (AGE), polyol pathway, hexosamine pathway and oxidative stress. These factors interact with one another, thereby facilitating inflammatory processes, leading to the development of glomerulosclerosis under diabetic conditions. In addition to metabolic pathways, Rho-kinase, an effector of small-GTPase binding protein Rho, has been implicated as an important factor in the pathogenesis of DN. A number of studies have demonstrated that Rho-kinase plays key roles in the development of DN by inducing endothelial dysfunction, mesangial excessive extracellular matrix (ECM) production, podocyte abnormality, and tubulointerstitial fibrosis. In this review article, we describe our current understanding of the signaling pathways in DN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call