Abstract

Dopamine (DA), a simplified mimic of mussel proteins, can be employed as a reductant in the preparation of Au nanoparticles (AuNPs) due to its inherent catechol building block. The widely accepted mechanism of AuNP formation using DA as the reductant assumes that the reduction of Au(III) ions involves the two-electron oxidation of DA, where the corresponding phenol and phenolates serve as the reductive species to yield quinone. We herein report a novel insight into the mechanism of formation of AuNPs using DA as the reductant. We demonstrate that the synthesis of AuNPs requires the prior oxidation of the DA to form quinone units, which then catalyze the formation of semiquinones. These semiquinone radicals (SMQs) reduce the Au(III) ions to form the initial AuNPs, and further growth is then catalyzed by the first AuNPs, with nucleation occurring where the SMQs, phenols, and phenolates can serve as reductive species. In addition, DA oxidizes and polymerizes to form a polydopamine capping layer on the AuNPs. We therefore expect that the novel mechanism proposed herein may promote us to furthermore explore the production of noble metal NPs using other polyphenols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.