Abstract

Iron(II/III) and manganese(II) both catalyze the autoxidation of the neurotransmitter dopamine (DA) in the presence of L-cysteine (CySH) in buffered aqueous solution at pH 7.4. Fe2+/Fe3+ and CySH together generate the hydroxyl (HO.) and cysteinyl thiyl (CyS.) radicals. DA is oxidized by HO. to DA semiquinone radical species that either react with CyS. to give 5-S-cysteinyldopamine (5-S-CyS-DA), 2-S-CyS-DA, and 6-S-CyS-DA or disproportionate to DA-o-quinone that reacts with CySH to give the same cysteinyl conjugates of DA. The major product of this initial reaction is 5-S-CyS-DA. However, 5-S-CyS-DA can be further oxidized by HO. to an o-quinone (2) that undergoes intramolecular cyclization to an o-quinone imine (3). The latter intermediate is the precursor of the dihydrobenzothiazine (DHBT) 7-(2-aminoethyl)-3,4-dihydro-5-hydroxy-2H-1, 4-benzothiazine-3-carboxylic acid (DHBT-1) and several other cyclized products. However, cysteinyl conjugates of DA can also be oxidized by HO. in a one-electron abstraction reaction that leads to DA thiyl radicals. Reactions of these radicals with CyS. or DA semiquinone radicals lead to some novel DA disulfides and thioethers, respectively. The Mn(II)-catalyzed oxidation of DA generates DA-o-quinone that is scavenged by CySH to give 5-S-CyS-DA (major initial product) with lower yields of other cysteinyldopamines. Subsequent Mn(II)-catalyzed oxidation of 5-S-CyS-DA gives o-quinone 2 and thence o-quinone imine 3 that serve as the precursors of DHBT-1 and several other DHBTs. Organic or oxygen radicals do not play significant roles in the Mn(II)-catalyzed oxidation of DA in the presence of CySH. Recent studies have demonstrated that DHBT-1 can be accumulated by brain mitochondria and evoke irreversible inhibition of NADH-coenzyme Q reductase (complex I). Furthermore, iron, manganese, and alterations in glutathione and CySH metabolism have been implicated in the selective degeneration of nigrostriatal dopaminergic neurons in idiopathic and chemically induced Parkinson's disease (PD). Because DHBT-1 is formed in both the iron- and manganese-catalyzed oxidation of DA in the presence of CySH and a defect in mitochondrial complex I respiration contributes to dopaminergic neuronal cell death in PD, the results of this investigation are discussed in terms of their possible implications to an understanding of the neuropathological processes in idiopathic and chemically induced parkinsonism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call