Abstract

Nanoindentation has been widely used to access the micro-/nanomechanical properties of materials. However, the contribution of micro-texture evolution to the anisotropic surface topography, the correlation of dislocation density characteristics with the orientation-dependent plastic volume, and the specifics of inherent slip activities, are still not fully elucidated up to now.Herein, nanoindentation simulations were performed on (001)-, (101)- and (111)-oriented single-crystal aluminium. Dominant slip systems are exactly determined for each surface pile-up for the first time. Moreover, lattice rotation facilitates the formation of pile-ups. The anisotropic plastic volume is controlled by the preference of intrinsic dislocation movement. In (001) sample, dislocations prefer to propagate along the free surface instead of into the depth of the sample, causing its most obvious pile-ups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.