Abstract
IntroductionHyoscine butylbromide (HBB) is one of the most used antispasmodics in clinical practice. Recent translational consensus has demonstrated a similarity between human colonic motor patterns studied ex vivo and in vivo, suggesting ex vivo can predict in vivo results. It is unclear whether the mechanism of action of antispasmodics can predict different use in clinical practice. The aim of the present study is to bridge this gap dissecting HBB's role in excitatory and inhibitory neural pathways. Methods: 309 colon samples from 48 patients were studied in muscle bath experiments. HBB was tested on: 1-spontaneous phasic contractions (SPCs); 2-carbachol-induced contractility; electrical field stimulation (EFS)-induced selective stimulation of 3-excitatory and 4-inhibitory pathways and 5- SPCs and EFS-induced contractions enhanced by neostigmine. Atropine, AF-DX116 (M2 blocker) and DAU-5884 (M3 blocker) were used as comparators. ResultsIn the presence of tetrodotoxin (TTX), HBB and atropine 1 μM reduced SPCs. HBB and atropine concentration-dependently reduced carbachol- and EFS-induced contractions. Inhibitory effects of DAU-5884 on EFS-induced contractions were more potent than of AF-DX116. HBB did not affect the off-response associated to neural inhibitory responses. Neostigmine enhanced both SPCs and EFS-induced contractions. In the presence of TTX and ω-conotoxin (GVIA), neostigmine still enhanced SPCs. Addition of HBB and atropine reduced these responses. ConclusionsThis study demonstrates that HBB inhibits neural cholinergic contractions associated to muscarinic (mainly M3) receptors. HBB has a potential role in reducing colonic spasm induced by the release of acetylcholine from enteric motor neurons and from an atypical source including a potential non-neuronal origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.