Abstract

BackgroundImproving the feed efficiency would increase profitability for producers while also reducing the environmental footprint of livestock production. This study was conducted to investigate the relationships among feed efficiency traits and metabolizable efficiency traits in 180 male broilers. Significant loci and genes affecting the metabolizable efficiency traits were explored with an imputation-based genome-wide association study. The traits measured or calculated comprised three growth traits, five feed efficiency related traits, and nine metabolizable efficiency traits.ResultsThe residual feed intake (RFI) showed moderate to high and positive phenotypic correlations with eight other traits measured, including average daily feed intake (ADFI), dry excreta weight (DEW), gross energy excretion (GEE), crude protein excretion (CPE), metabolizable dry matter (MDM), nitrogen corrected apparent metabolizable energy (AMEn), abdominal fat weight (AbF), and percentage of abdominal fat (AbP). Greater correlations were observed between growth traits and the feed conversion ratio (FCR) than RFI. In addition, the RFI, FCR, ADFI, DEW, GEE, CPE, MDM, AMEn, AbF, and AbP were lower in low-RFI birds than high-RFI birds (P < 0.01 or P < 0.05), whereas the coefficients of MDM and MCP of low-RFI birds were greater than those of high-RFI birds (P < 0.01). Five narrow QTLs for metabolizable efficiency traits were detected, including one 82.46-kb region for DEW and GEE on Gallus gallus chromosome (GGA) 26, one 120.13-kb region for MDM and AMEn on GGA1, one 691.25-kb region for the coefficients of MDM and AMEn on GGA5, one region for the coefficients of MDM and MCP on GGA2 (103.45–103.53 Mb), and one 690.50-kb region for the coefficient of MCP on GGA14. Linkage disequilibrium (LD) analysis indicated that the five regions contained high LD blocks, as well as the genes chromosome 26 C6orf106 homolog (C26H6orf106), LOC396098, SH3 and multiple ankyrin repeat domains 2 (SHANK2), ETS homologous factor (EHF), and histamine receptor H3-like (HRH3L), which are known to be involved in the regulation of neurodevelopment, cell proliferation and differentiation, and food intake.ConclusionsSelection for low RFI significantly decreased chicken feed intake, excreta output, and abdominal fat deposition, and increased nutrient digestibility without changing the weight gain. Five novel QTL regions involved in the control of metabolizable efficiency in chickens were identified. These results, combined through nutritional and genetic approaches, should facilitate novel insights into improving feed efficiency in poultry and other species.

Highlights

  • Feed efficiency is the most important trait in the poultry industry because feed accounts for approximately 70% of the total production cost [1]

  • Five novel Quantitative trait locus (QTL) regions involved in the control of metabolizable efficiency in chickens were identified

  • To improve the accuracy of imputation, in the following procedure we introduced a larger genotyping data for 3,449 broilers (1,926 males and 1,523 females) from three generations of line B using 55 K Single nucleotide polymorphism (SNP) arrays previously acquired by our group

Read more

Summary

Introduction

Feed efficiency is the most important trait in the poultry industry because feed accounts for approximately 70% of the total production cost [1]. The most widely used indexes for evaluating feed efficiency are the feed conversion ratio (FCR) and residual feed intake (RFI). FCR is the ratio between feed intake and body weight gain during the measurement period. RFI, which was first used by Koch et al [2] for cattle, is generally defined as the difference between actual and expected feed intake, the latter of which is based on an animal’s requirements for maintaining body weight and for production [3]. Metabolizable efficiency is easier to determine and is a more practical measure than digestive efficiency, because feces and urine are voided together via the single channel of the cloaca [5]. Selection for metabolizable efficiency is accompanied by improved feed efficiency and reduced environmental impact [7, 9]. The traits measured or calculated comprised three growth traits, five feed efficiency related traits, and nine metabolizable efficiency traits

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call