Abstract

The interaction mechanism of Th(IV) on sepiolite was investigated by batch, EXAFS and surface complexation modeling. The batch experiments revealed that the sorption of Th(IV) on sepiolite remarkably decreased with increasing of ionic strength at pH <5.0, while no effect of ionic strength on Th(IV) removal was observed at pH >5.0. The removal kinetics and isotherms of Th(IV) on sepiolite can be satisfactorily simulated by the pseudo-second-order and Langmuir model, respectively. The analysis of EXAFS spectra for sepiolite-Th(IV) at pH 5.0 and 7.5 indicated that the sorption of Th(IV) on sepiolite at pH 5.0 and 7.5 was inner-sphere surface complexation and surface precipitation, respectively. The results of surface complexation modeling showed that Th(IV) sorption on sepiolite can be fitted by a cation exchange sites (X4Th species) at pH <4.5, an inner-sphere surface complexation (SOTh3+ species) at near neutral and a surface precipitation at pH >7.0 very well. These findings are crucial for the evaluation of fate and transport of Th(IV) at water-mineral interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.