Abstract
Heterogeneous activation of peroxymonosulfate (PMS) has become an attractive approach for catalytic oxidation since it can not only provide sulfate radicals as an alternative to hydroxyl radicals, but also avoid the metal toxicity in homogeneous catalysis. In this study, three one-dimensional (1D) α-MnO2 nanostructures, nanorods, nanotubes and nanowires, were fabricated by a one-pot hydrothermal method without addition of any surfactants. Shape-dependent performance of 1D α-MnO2 was observed in catalytic degradation of phenol solutions. The phenol oxidation can be described by a first-order kinetic model and the activation energies of phenol oxidation on three α-MnO2 materials were estimated to be 20.3, 39.3 and 87.1kJ/mol on nanowires, nanorods, and nanotubes, respectively. Both electron paramagnetic resonance (EPR) spectra and competitive radical tests were applied to investigate the PMS activation processes and to differentiate the major reactive species dominating the catalytic oxidation. The processes of PMS activation, evolution of sulfate radicals, and phenol degradation pathways were clearly illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.