Abstract
Microtubule-associated protein tau is characterized by the fact that it is an intrinsically disordered protein due to its lack of a stable conformation and high flexibility. Intracellular inclusions of fibrillar forms of tau with a β-sheet structure accumulate in the brain of patients with Alzheimer's disease and other tauopathies. Accordingly, detachment of tau from microtubules and transition of tau from a disordered state to an abnormally aggregated state are essential events preceding the onset of tau-related diseases. Many reports have shown that this transition is caused by post-translational modifications, including hyperphosphorylation and acetylation. The misfolded tau is self-assembled and forms a tau oligomer before the appearance of tau inclusions. Animal and pathological studies using human samples have demonstrated that tau oligomer formation contributes to neuronal loss. During the progression of tauopathies, tau seeds are released from cells and incorporated into other cells, leading to the propagation of pathological tau aggregation. Accumulating evidence suggests several potential approaches for blocking tau-mediated toxicity: (1) direct inhibition of pathological tau aggregation and (2) inhibition of tau post-translational modifications that occur prior to pathological tau aggregation, (3) inhibition of tau propagation and (4) stabilization of microtubules. In addition to traditional low-molecular-weight compounds, newer drug discovery approaches such as the development of medium-molecular-weight drugs (peptide- or oligonucleotide-based drugs) and high-molecular-weight drugs (antibody-based drugs) provide alternative pathways to preventing the formation of abnormal tau. Of particular interest are recent studies suggesting that tau droplet formation by liquid-liquid phase separation may be the initial step in aberrant tau aggregation, as well results that implicate roles for tau in dendritic and nuclear functions. Here, we review the mechanisms through which drugs can target tau and consider recent clinical trials for the treatment of tauopathies. In addition, we discuss the utility of these newer strategies and propose future directions for research on tau-targeted therapeutics.
Highlights
Two classes of drugs for dementia treatment have been approved by the major regulatory agencies (US Food and Drug Administration, FDA; European Medicines Agency, EMA; Pharmaceuticals and Medical Devices Agency, PMDA): acetylcholinesterase inhibitors, which treat mild to moderate Alzheimer’s disease (AD), and N-methyl-D-aspartate receptor antagonists, which treat moderate to severe AD
There has been great interest in conducting tau-targeted therapeutics in clinical trials to slow the onset and progression of tauopathies such as AD (Giacobini and Gold, 2013). These have been driven by the fact that phase 3 clinical trials for AD using Aβ-targeted drugs failed to reach their primary predicted outcome (Holmes et al, 2008; Rosenblum, 2014)
The pattern of tau isoform deposition varies with each tauopathy; all six isoforms are presented in AD and chronic traumatic encephalopathy (CTE), and three microtubulebinding repeats (3R)-tau and four microtubule-binding repeats (4R)-tau are predominately expressed in Pick’s disease and corticobasal degeneration (CBD), respectively
Summary
Two classes of drugs for dementia treatment have been approved by the major regulatory agencies (US Food and Drug Administration, FDA; European Medicines Agency, EMA; Pharmaceuticals and Medical Devices Agency, PMDA): acetylcholinesterase inhibitors, which treat mild to moderate Alzheimer’s disease (AD), and N-methyl-D-aspartate receptor antagonists (e.g., memantine), which treat moderate to severe AD. Administration of another OGA inhibitor, ASN120290 (developed by Asceneuron) to P301S transgenic mice leads to increased O-GlcNAcylated tau and decreased tau phosphorylation (VandeVrede et al, 2020a); subsequently ASN120290 was found to be safe and well-tolerated in a phase 1 study involving 61 healthy volunteers (VandeVrede et al, 2020a).
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have