Abstract

Despite its importance, chemical process has been often overlooked in CO2 sorption on carbon based oxyhydroxide composites. In this study, pristine and ball-milled biochar/Fe oxyhydroxide composites were fabricated for CO2 sorption at 25 °C. The composites, particularly the ones with high Fe content, were effective sorbents for CO2 with the capacities of up to 160 mg g−1. The primary mechanism of CO2 sorption on biochar composites with low Fe content was physical adsorption. When the Fe content increased, biochar/Fe oxyhydroxide composites showed enhanced CO2 sorption capacities, but the sorption kinetics became slower. This is because the governing CO2 sorption mechanism was shifted from physical adsorption to chemical reaction between Fe oxyhydroxides and CO2. The formed (oxy)hydroxycarbonate could be decomposed at a temperature between 50 and 125 °C. Furthermore, ball milling could speed up CO2 mineralization rate on the composites, especially for those with high Fe content, to favor the relative significance of chemical sorption. Both physical and chemical CO2 sorption mechanisms were verified by different characterization methods including in situ diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. Findings of this study not only demonstrate the importance of chemical sorption, but also provide new insights on CO2 capture by low-cost and environmentally benign biochar/Fe oxyhydroxide composites. Besides, the low regeneration temperature of chemically-sorbed CO2 gives biochar/Fe oxyhydroxide composite a competitive edge over other CO2 sorbents, which often need a high regeneration temperature or are not regenerable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.