Abstract

CdZnTe (CZT) and CdMnTe (CMT) materials come into the spotlight for room-temperature semiconductor detectors. Nonethelss, both materials still have limitations for the production of economical, uniform, and large-volume devices due to the zinc (Zn) segregation in CZT and manganese purity in CMT. The effective segregation coefficient of Zn in the CdTe host is nearly 1.3, so about 5–6% of Zn deviation has been reported in Bridgman-grown CZT (Zn=10%) ingots. Such Zn non-uniformity limits the cutting of the ingot parallel to the crystal growth direction for producing large-volume CZT detectors due to the signal non-uniformity that would be generated by the band-gap variations. However, our recent findings show that the Zn segregation can be controlled by the specific thermal environment. The high residual impurities in the starting source materials, especially for manganese, were obstacles for obtaining high-performance CMT detectors. The purification of manganese telluride (MnTe) by a floating Te melt-zone proved to be very effective, and CMT detectors fabricated with purified material give a 2.1% energy resolution for 662 keV associated with a 137Cs gamma source.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.