Abstract

Coal deposits can provide novel stratigraphic markers for reconstructing the evolution history of a sedimentary basin and correlating sedimentary successions. Age dating was conducted on zircons harvested from the No. 6 coal seam within the Heidaigou Mine, Inner Mongolia. Two-kilogram samples were taken, and the recovered zircons were analyzed for U–Pb isotopic and rare earth elements (REE). The REE results of the zircon grains showed that all the zircon grains were enriched in heavy rare earth elements (HREE) but depleted in light rare earth elements (LREE). In addition, zircons from the No. 6 coal seam had strongly positive Ce (Ce/Ce* = 2.4–224.6) and strongly negative Eu anomalies (Eu/Eu* = 0.1–0.6). Combined with the clear oscillatory zones in the cathodoluminescence images, all the zircon grains of the No. 6 coal were characteristic of zircons with magmatic origins. The 206Pb/238U ages of 34 zircon grains produced a narrow age population of 303–286 Ma, with a weighted average age of 293.0 ± 1.5 Ma (mean-squared weighted deviation = 1.5). Therefore, we infer that the No. 6 coal in the Heidaigou Mine was deposited during the Early Permian, and the Carboniferous–Permian boundary should be located stratigraphically lower than the No. 6 coal. The zircon U–Pb geochronology is a useful tool to determine the depositional ages of non-marine-influenced coal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call