Abstract

Different separation techniques such as solvent extraction, ion exchange, and precipitation are often used for recovery of rare earth elements (REEs) from pregnant leach solutions obtained from acid leaching. Solvent extraction is generally accepted as the most appropriate commercial technology for separating REEs due to the need to be able to handle larger volumes of diluted pregnant solutions. This study focused on the development of selective separation of light and heavy REEs from the pregnant leach solution obtained from leaching of apatite ore in 1 M sulfuric acid (H2SO4) using solvent extraction. Three different commercial organophosphorus extractants (di-(2-ethylhexyl) phosphoric acid (D2EHPA), 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester (PC88A) and tributyl phosphate (TBP)), and the influences of experimental parameters such as extractant concentration, organic/aqueous phase ratio, diluent type, pH, extraction time and stripping agent concentration were examined. Results showed that light REEs (LREEs) and heavy REEs (HREEs) in the pregnant leach solution were selectively separated with D2EHPA via a two-stage extraction process. In the first-stage of solvent extraction, >90% of (0.05 g/L) HREEs was extracted with 1.8 M D2EHPA in kerosene while the vast majority (>95%) of LREEs was remained in raffinate. In the second-stage, >93% (1.01 g/L) of LREEs was extracted from the raffinate with 1.8 M D2EHPA dissolved in kerosene at pH 1.6. HREEs (>95%) and LREEs (>90%) loaded with D2EHPA after the first and second-stage of extraction were stripped by 4 M H2SO4 and 1 M H2SO4 solutions, respectively. Distribution of middle rare earth elements (MREEs) was discussed through the extraction processes in this study.

Highlights

  • The rare earth elements (REEs) are the group of seventeen chemical elements, including scandium, yttrium and the lanthanides

  • This study focused on the development of selective separation of light and heavy REEs from the pregnant leach solution obtained from leaching of apatite ore in 1 M sulfuric acid (H2SO4) using solvent extraction

  • The extraction efficiencies of the REEs through leaching, solvent extraction and stripping were calculated for each REE and categorized into three groups: light (La-Nd) light REEs (LREEs); middle (Sm-Gd), middle rare earth elements (MREEs); and heavy REEs (Dy-Y) HREEs as classified in the periodic table [1]

Read more

Summary

Introduction

The rare earth elements (REEs) are the group of seventeen chemical elements, including scandium, yttrium and the lanthanides. They are categorized into mainly two groups such as cerium sub-group (La-Eu) and yttrium sub-group elements (Gd-Lu, Y). The cerium sub-group elements are relatively abundant and more strongly concentrated in the continental crust than the yttrium sub-group elements [1] [2]. Apatite can be used as an ore of REEs [6]. The treatment of apatite ores for REEs extraction commonly requires a pre-leach stage with mineral acids [2]-[10]

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call