Abstract

Post-translational redox modifications provide an important mechanism for the control of major cellular processes. Thioredoxins (Trxs), which are key actors in this regulatory mechanism, are ubiquitous proteins that catalyse thiol-disulfide exchange reactions. In chloroplasts, Trx f, Trx m and NADPH-dependent Trx reductase C (NTRC) have been identified as transmitters of the redox signal by transferring electrons to downstream target enzymes. The number of characterised Trx targets has greatly increased in the last few years, but most of them were determined using in vitro procedures lacking isoform specificity. With this background, we have developed a new in vivo approach based on the overexpression of His-tagged single-cysteine mutants of Trx f, Trx m or NTRC into Nicotiana benthamiana plants. The over-expressed mutated Trxs, capable of forming a stable mixed disulfide bond with target proteins in plants, were immobilised on affinity columns packed with Ni-NTA agarose, and the covalently linked targets were eluted with dithiothreitol and identified by mass spectrometry-based proteomics. The in vivo approach allowed identification of 6, 9 and 42 new potential targets for Trx f, Trx m and NTRC, respectively, and an apparent specificity between NTRC and Trxs was achieved. Functional analysis showed that these targets are involved in several cellular processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.