Abstract
The post-combustion capture process (PCCP) using amine-based solvent was the most mature and adequately researched carbon capture and storage (CCS) technology. Monoethanolamine (MEA) solvent regeneration in the stripper (desorption process) usually takes high energy consumption and a MEA make-up is required before re-entering the absorber (absorption process). To improve the CO2 capture efficiency and reduce the overall energy consumption of PCCP, four configurations (Design-1, Design-2, Design-3, Design-4) are presented, where Design-1 is denoted as the base case design. Design-2 is an extension of Design-1 by adding the side intercooler in the absorber. Design-3 is an extension of Design-2 by using internal heat integration in the stripper. Design-4 is an extension of Design-3 by adding the side interheater in the absorber. By using response surface methodology (RSM) in conjunction with central composite design (CCD), operating parameters (MEA solvent flowrate, MEA concentration, pressure) including side intercooler/side interheater locations of Design-2 to Design-4 are optimized. It is successfully validated that the side intercooler absorber could increase the CO2 capture ability by MEA solvent and the side interheater stripper with internal heat integration could effectively reduce energy consumption about 36% to 62%.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have