Abstract

AbstractA new, practical implementation of double‐group symmetry to relativistic Gaussian spinors is presented for four‐component relativistic molecular calculations. We show that the systematic adaptability to irreducible representations under arbitrary point‐group symmetry, as well as Kramers (time‐reversal) symmetry, is inherent in the present basis spinors, which possess the analytic structure of Dirac atomic spinors. The implementation of double‐group symmetry entails significant computational efficiencies in the relativistic second‐order Møller–Plesset perturbation calculation on Au2 and the density functional theory (DFT) calculation with the B3LYP functional on octahedral UF6, in which the highest symmetries used are, respectively, C and D. The four‐component B3LYP equilibrium geometry of UF6 is reported. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem, 2007

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call