Abstract

<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> A new hot-carrier injection mechanism that depends on gate bias and body thickness in nanoscale floating-body MOSFETs has been identified using 2-D device simulation and hot-carrier degradation measurements. When gate voltage is sufficiently high and the body thickness is thin, the potential of the floating body is elevated due to the ohmic voltage drop at the source extension (SE), resulting in impact ionization at the SE. Hot-carrier stress with accelerated gate voltage may lead to a huge overestimation of lifetime in nanoscale floating-body MOSFETs. </para>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.