Abstract

ABSTRACT Characterizing a planet detected by microlensing is hard if the planetary signal is weak or the lens-source relative trajectory is far from caustics. However, statistical analyses of planet demography must include those planets to accurately determine occurrence rates. As part of a systematic modelling effort in the context of a >10-yr retrospective analysis of MOA’s survey observations to build an extended MOA statistical sample, we analyse the light curve of the planetary microlensing event MOA-2014-BLG-472. This event provides weak constraints on the physical parameters of the lens, as a result of a planetary anomaly occurring at low magnification in the light curve. We use a Bayesian analysis to estimate the properties of the planet, based on a refined Galactic model and the assumption that all Milky Way’s stars have an equal planet-hosting probability. We find that a lens consisting of a $1.9^{+2.2}_{-1.2}\, \mathrm{M}_\mathrm{J}$ giant planet orbiting a $0.31^{+0.36}_{-0.19}\, \mathrm{M}_\odot$ host at a projected separation of $0.75\pm 0.24\, \mathrm{au}$ is consistent with the observations and is most likely, based on the Galactic priors. The lens most probably lies in the Galactic bulge, at $7.2^{+0.6}_{-1.7}\,\mathrm{kpc}$ from Earth. The accurate measurement of the measured planet-to-host star mass ratio will be included in the next statistical analysis of cold planet demography detected by microlensing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.