Abstract
ZIF-67@NH2–SiO2 composites were prepared by loading the metal-organic frameworks ZIF-67 on amino modified SiO2 gel particles (NH2–SiO2, 80–100 mesh) through layer-by-layer self-assembly method. Systematic investigation on the effects of ZIF-67 loading amounts on NH2–SiO2 packed stainless steel chromatographic column (specification 1.0 m×2.0 mm I.D.), the flow rate of He as carrier gas and the injection amount of mixed gas (H2/D2) on the hydrogen isotope H2/D2 separation performance at liquid nitrogen temperature, unraveled the optimal conditions for H2/D2 isotope separation. The results showed that the optimal stationary phase materials under the optimized conditions can effectively separate H2 and D2 with separation resolution R = 1.52 and the separation time t = 10.15 min. The superior performance of the ZIF-67 is tentatively thought to be due to kinetic quantum sieving (pore size 3.3 Å) effect and chemical affinity sieving effect of Co ion in ZIF-67.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have