Abstract
Enzymatic manipulation and modulation of nucleic acids are a central part of cellular function, protection, and reproduction, while rapid and accurate detection of ultralow amount of nucleic acids remains a major challenge in molecular biology research and clinic diagnosis of genetic diseases. Herein, we reported that exonuclease III can degrade the G-quadruplex structure, indicating the new exonuclease's function. Basing on the function of exonuclease III, a novel G-quadruplex-hemin DNAzyme-based colorimetric detection of tumor suppressor gene p53 was successfully developed. Although only one oligonucleotide probe was involved, the sensing strategy could suppress the optical background and achieve an efficient G-quadruplex-hemin DNAzyme-based signal amplification. Specifically, a label-free functional nucleic acid probe (called THzyme probe) was designed via introducing target DNA probe-contained hairpin structure into G-quadruplex DNAzyme. Even if this probe can fold into G-quadruplex structure in the presence of hemin very different from the double-stranded DNA, it is easily degraded by exonuclease III. Thus, no change in UV-vis absorption intensity is detected in the absence of target DNA. However, the hybridization of target DNA can protect the integrity and catalytic activity of THzyme probe, producing the DNAzyme-amplified colorimetric signal. As a result, the p53 gene was able to be detected down to 1.0 pM (final concentration in the signal-generating solution: 50.0 fM) and mismatched target DNAs were easily distinguished. It is expected that this simple sensing methodology for DNA detection can find its utility in point-of-care applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have