Abstract
Combining a current source involving vortical surface currents in the set of Maxwell’s equations offers a functional framework to address the complex phenomena of electromagnetic turbulence. The field structure equations exhibit fluid behavior with associated electromagnetic viscosity and reveal that the electromagnetic field, as a fluid, shows turbulent properties. This is an entirely new mechanism, investigated for the first time to the best of our knowledge. The fluidic–electromagnetic analogy implies that diffraction is the analog phenomenon of EM turbulence. The method clarifies the role of vortical surface currents in generating electromagnetic turbulence and classical fractal-like behavior in optical devices and suggests norms to design suitable plasmon circuity to control electromagnetic turbulence in stealth technology and propulsion machines.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have