Abstract
Mixed flow turbines are widely used in several industrial applications covering turbomachinery, automotive engineering and electricity production. For decades, it is well known that mixed flow turbines are a seat of several loss phenomena such as the volute to rotor interspace loss, subject of this paper. Commonly, the meanline approach is the first step solution for building a preliminary design of such turbines and estimating subsequent losses. The accuracy of the code used in the meanline modeling is crucial for building an optimized turbine design with a minimized loss generation. This paper presents an improved validated meanline code, written in the newest object-oriented version of the FORTRAN language, for turbomachinery performance prediction. Unlike commercially available codes, the code allows the calculation of the rotor passage loss coefficient given the turbine expansion ratio without the need for additional test data. The standard deviation value between the code and test data is less than 10%, for all studied cases which ensure the validity of the developed model. Then, the developed code is exploited to investigate the effect of the volute to rotor interspace geometry on the loss generation and performance of a mixed flow turbine. Indeed, a performance distribution over a wide range of rotational speed and an energy loss breakdown are depicted and discussed showing a significant impact of the volute to rotor interspace. The results revealed an improvement in the turbine efficiency up to 2.9% with a volute to rotor interspace radii ratio of 0.59 at 80% of the design speed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have