Abstract

Reaction automata direct graph (RADG) is a new technique that uses the automata direct graph method to represent a certain design for encryption and decryption. Jump states are available in the RADG design that enables the encipher to generate different ciphertexts each time from the same plaintext and wherein not a single ciphertext is related to a certain plaintext. This study created a matrix representation for RADG designs that allows the calculation of the number of cases ($F_{Q}$)mathematically possible for any design of the set $Q$. $F_{Q}$ is an important part of the function $mathrm{F}(mathrm{n}, mathrm{m}, lambda)$ that calculates the total number of cases of a certain design for the values $Q, R, sum, psi, J$ and $T$. This paper produces a mathematical equation to calculate $F_{Q}$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.