Abstract

Air-stable and solution-processable fluorene-based bipolar charge transporting materials (CTMs) were designed, synthesized, and analyzed. These CTMs feature anthraquinone, 9-fluorenone, and 9-dicyanofluorenylidine groups and exhibit good film formation properties for solvent processing. Quantum chemistry simulations and optical absorption measurements proved that several stable conformers and charge transfer complexes form inside the molecules. Hole mobilities in CTMs were around 10-4 to 10-5 cm2 V-1 s-1, while electron mobility in compounds with anthraquinone and 9-dicyanofluorenylidine groups was approximately one order of magnitude lower.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.