Abstract
In this paper, we propose two new solution schemes to solve the stochastic strongly monotone variational inequality (VI) problems: the stochastic extra-point solution scheme and the stochastic extra-momentum solution scheme. The first one is a general scheme based on updating the iterative sequence and an auxiliary extra-point sequence. In the case of a deterministic VI model, this approach includes several state-of-the-art first-order methods as its special cases. The second scheme combines two momentum-based directions: the so-called heavy-ball direction and the optimism direction, where only one projection per iteration is required in its updating process. We show that if the variance of the stochastic oracle is appropriately controlled, then both schemes can be made to achieve optimal iteration complexity of $\mathcal{O}\left(\kappa\ln\left(\frac{1}{\epsilon}\right)\right)$ to reach an $\epsilon$-solution for a strongly monotone VI problem with condition number $\kappa$. As a specific application to stochastic VI, we demonstrate how to incorporate a zeroth-order approach for solving stochastic minimax saddle-point problems in our schemes, where only noisy and biased samples of the objective can be obtained, with a total sample complexity of $\mathcal{O}\left(\frac{\kappa}{\epsilon}\right)$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.